First Semester M.Tech. Degree Examination, Dec.2019/Jan.2020 **Digital VLSI Design**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Describe the behavior of MOS system under external bias with energy band diagram and relevant equations. (10 Marks)
 - b. Explain the channel length modulation with Ids equation. (06 Marks)
 - c. Write the difference between enhancement mode and depletion mode MOSFET. (04 Marks)

OR

- 2 a. Explain the effects of short channel in MOS transistor and derive the expression for the same. (08 Marks)
 - b. Consider a resistive load inverter with $V_{DD} = 5 \, V$, $K'_n = 20 \, \mu_n \, / \, V^2$, $V_{TO} = 0.8 \, V$,

 $R_L=200~\text{K}\Omega$ and $\frac{\omega}{L}=2$. Find the critical voltages $V_{OL},\,V_{OH},\,V_{IL}$ and V_{IH} and find the noise margin of the circuit.

2. Draw a depletion load nMOS inverter circuit and calculate V_{OH} and V_{OL} of the circuit.

(06 Marks)

Module-2

- 3 a. Draw the neat circuit diagram of CMOS inverter and explain the circuit operation with its characteristics mentioning all five regions. (10 Marks)
 - b. Consider a CMOS inverter circuit with the following parameters:

 $V_{DD}=3.3~V$, $V_{T_{O,n}}=0.6~V$, $V_{T_{O,P}}=-0.7~V$, $K_n=200~\mu\text{A/V}^2$, $K_P=80~\mu\text{A/V}^2$. Calculate the noise margins of the circuit. (05 Marks)

c. Derive relationship between $\left(\frac{\omega}{L}\right)_p$ and $\left(\frac{\omega}{L}\right)_n$ for symmetric CMOS inverter. Also discuss the effects of K_R variation on VTC. (05 Marks)

OR

- 4 a. Explain CMOS ring oscillator circuit. What is the expression for frequency in arbitrary odd (n) of cascade connected inverters. (10 Marks)
 - b. Define propagation delays and derive the expression for T_{pHL} and T_{pLH} for CMOS inverter, using differential equation method. (10 Marks)

Module-3

- 5 a. Explain four transistor, three transistor, two transistor and one transistor DRAM cell.
 (10 Marks)
 - b. Explain memory structure SRAM with read and write circuitry with aid of read and write circuit diagrams. (10 Marks)

OR

Explain the memory structure of ferroelectric random access memory. 6

(08 Marks)

Design 4×4 NOR base ROM array that can store the following data given, Note: R_1 , R_2 , R_3 , $R_4 \rightarrow Address$

 $C_1, C_2, C_3, C_4 \rightarrow$ Memory locations

litory	1000	CIOIL	,	Bls. /***			
R_1	R_2	R_3	R ₄	C_1	C_2	C_3	C ₄
1	0	0	0	0	1	0	1
0	1	0,,,,,,,,	0	0	0	1	1
0	0	1	0	1	0	0	1
0	0	0	1	0	1	1	0

(08 Marks)

Differentiate between DRAM and SRAM.

(04 Marks)

(05 Marks)

Module-4

- Explain how to overcome threshold voltage drop in digital circuits using boot strapping 7 technique. (10 Marks)
 - What is dynamic CMOS logic? Explain with an example. b. (05 Marks)
 - Explain briefly with suitable circuit pass transistor in dynamic CMOS logic.

- Explain the static behavior of BiCMOS inverter. 8 (08 Marks)
 - What is BiCMOS logic circuit? Write an application for it. b. (04 Marks)
 - Implement the following function using, BiCMOS logic Y = AB + CD. C. (08 Marks)

What are the different models of ESD? Explain them with suitable diagrams. 9 (10 Marks)

Draw the circuit diagram to reduce $L\frac{di}{dt}$ noise and write a few lines about their working.

(10 Marks)

OR

Explain factorial design for n = 3. 10

(10 Marks)

Explain performance variability minimization and performance modeling.

(10 Marks)